logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Milton Minervino; Jörg Thuswaldner
The geometry of non-unit Pisot substitutions
(Géométrie des substitutions de type Pisot non unimodulaires)
Annales de l'institut Fourier, 64 no. 4 (2014), p. 1373-1417, doi: 10.5802/aif.2884
Article PDF | Reviews MR 3329667 | Zbl 06387311
Class. Math.: 05B45, 11A63, 11F85, 28A80
Keywords: Rauzy fractal, tiling, $p$-adic completion, beta-numeration

Résumé - Abstract

It is known that with a non-unit Pisot substitution $\sigma $ one can associate certain fractal tiles, so-called Rauzy fractals. In our setting, these fractals are subsets of a certain open subring of the adèle ring of the associated Pisot number field. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, in terms of the dual of the one-dimensional realization of $\sigma $, and in the context of model sets for particular cut and project schemes. We also define stepped surfaces suited for non-unit Pisot substitutions. We provide basic topological and geometric properties of the Rauzy fractals, prove some tiling results for them, and provide relations to subshifts defined in terms of the periodic points of $\sigma $, to adic transformations, and a domain exchange.

Bibliography

[1] S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, 2000, p. 11–26  MR 1770451 |  Zbl 1001.11038
[2] S. Akiyama, “On the boundary of self affine tilings generated by Pisot numbers”, J. Math. Soc. Japan 54 (2002) no. 2, p. 283-308 Article |  MR 1883519 |  Zbl 1032.11033
[3] S. Akiyama, G. Barat, V. Berthé & A. Siegel, “Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions”, Monatsh. Math. 155 (2008) no. 3-4, p. 377-419 Article |  MR 2461585 |  Zbl 1190.11005
[4] P. Arnoux & S. Ito, “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin 8 (2001) no. 2, p. 181-207, Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000)  MR 1838930 |  Zbl 1007.37001
[5] M. Baake & R. V. Moody, “Weighted Dirac combs with pure point diffraction”, J. Reine Angew. Math. 573 (2004), p. 61-94  MR 2084582 |  Zbl 1188.43008
[6] M. Barge, H. Bruin, L. Jones & L. Sadun, “Homological Pisot substitutions and exact regularity”, Israel J. Math. 188 (2012), p. 281-300 Article |  MR 2897733 |  Zbl 1257.37010
[7] M. Barge & J. Kwapisz, “Geometric theory of unimodular Pisot substitutions”, Amer. J. Math. 128 (2006) no. 5, p. 1219-1282 Article |  MR 2262174 |  Zbl 1152.37011
[8] V. Berthé & A. Siegel, “Tilings associated with beta-numeration and substitutions”, Integers 5 (2005) no. 3  MR 2191748 |  Zbl 1139.37008
[9] V. Berthé & A. Siegel, “Purely periodic $\beta $-expansions in the Pisot non-unit case”, J. Number Theory 127 (2007) no. 2, p. 153-172 Article |  MR 2362431 |  Zbl 1197.11139
[10] V. Berthé, A. Siegel, W. Steiner, P. Surer & J. M. Thuswaldner, “Fractal tiles associated with shift radix systems”, Adv. Math. 226 (2011) no. 1, p. 139-175 Article |  MR 2735753 |  Zbl 1221.11018
[11] V. Berthé, A. Siegel & J. Thuswaldner, Substitutions, Rauzy fractals and tilings, Combinatorics, automata and number theory, Encyclopedia Math. Appl. 135, Cambridge Univ. Press, 2010, p. 248–323  MR 2759108 |  Zbl 1247.37015
[12] V. Canterini & A. Siegel, “Automate des préfixes-suffixes associé à une substitution primitive”, J. Théor. Nombres Bordeaux 13 (2001) no. 2, p. 353-369 Cedram |  MR 1879663 |  Zbl 1071.37011
[13] V. Canterini & A. Siegel, “Geometric representation of substitutions of Pisot type”, Trans. Amer. Math. Soc. 353 (2001) no. 12, p. 5121-5144 Article |  MR 1852097 |  Zbl 1142.37302
[14] J.-M. Dumont & A. Thomas, “Systemes de numeration et fonctions fractales relatifs aux substitutions”, Theoret. Comput. Sci. 65 (1989) no. 2, p. 153-169 Article |  MR 1020484 |  Zbl 0679.10010
[15] F. Durand, Combinatorics on Bratteli diagrams and dynamical systems, Combinatorics, automata and number theory, Encyclopedia Math. Appl. 135, Cambridge Univ. Press, 2010, p. 324–372  MR 2759109 |  Zbl 1272.37006
[16] N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel  MR 1970385
[17] C. Frougny & B. Solomyak, “Finite beta-expansions”, Ergodic Theory Dynam. Systems 12 (1992) no. 4, p. 713-723 Article |  MR 1200339 |  Zbl 0814.68065
[18] S. Ito & H. Rao, “Atomic surfaces, tilings and coincidence. I. Irreducible case”, Israel J. Math. 153 (2006), p. 129-155 Article |  MR 2254640 |  Zbl 1143.37013
[19] C. Kalle & W. Steiner, “Beta-expansions, natural extensions and multiple tilings associated with Pisot units”, Trans. Amer. Math. Soc. 364 (2012) no. 5, p. 2281-2318 Article |  MR 2888207 |  Zbl 1295.11010
[20] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York, 1966  MR 217751 |  Zbl 0158.40802
[21] R. D. Mauldin & S. C. Williams, “Hausdorff dimension in graph directed constructions”, Trans. Amer. Math. Soc. 309 (1988) no. 2, p. 811-829 Article |  MR 961615 |  Zbl 0706.28007
[22] R. V. Moody, Meyer sets and their duals, The mathematics of long-range aperiodic order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489, Kluwer Acad. Publ., 1997, p. 403–441  MR 1460032 |  Zbl 0880.43008
[23] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder  MR 1697859 |  Zbl 0956.11021
[24] M. Queffélec, Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics 1294, Springer-Verlag, Berlin, 2010  MR 2590264 |  Zbl 0642.28013
[25] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France 110 (1982) no. 2, p. 147-178 Numdam |  MR 667748 |  Zbl 0522.10032
[26] G. Rauzy, Rotations sur les groupes, nombres algébriques, et substitutions, Séminaire de Théorie des Nombres (Talence, 1987-1988), Exp. No. 21, Univ. Bordeaux I, 1988  Zbl 0726.11019
[27] Y. Sano, P. Arnoux & S. Ito, “Higher dimensional extensions of substitutions and their dual maps”, J. Anal. Math. 83 (2001), p. 183-206 Article |  MR 1828491 |  Zbl 0987.11013
[28] J.-P. Serre, Local fields, Graduate Texts in Mathematics 67, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg  MR 554237 |  Zbl 0423.12016
[29] A. Siegel, “Représentation des systèmes dynamiques substitutifs non unimodulaires”, Ergodic Theory Dynam. Systems 23 (2003) no. 4, p. 1247-1273 Article |  MR 1997975 |  Zbl 1052.37009
[30] A. Siegel & J. M. Thuswaldner, “Topological properties of Rauzy fractals”, Mém. Soc. Math. Fr. (N.S.) (2009) no. 118  MR 2721985 |  Zbl 1229.28021
[31] B. Sing, Pisot substitutions and beyond, Ph. D. Thesis, University of Bielefeld, 2006  Zbl 1210.93006
[32] V. F. Sirvent & B. Solomyak, “Pure discrete spectrum for one-dimensional substitution systems of Pisot type”, Canad. Math. Bull. 45 (2002) no. 4, p. 697-710, Dedicated to Robert V. Moody Article |  MR 1941235 |  Zbl 1038.37008
top