logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Anna Valette; Guillaume Valette
On the geometry of polynomial mappings at infinity
(Sur la géométrie à l’infini des applications polynomiales)
Annales de l'institut Fourier, 64 no. 5 (2014), p. 2147-2163, doi: 10.5802/aif.2907
Article PDF | Reviews MR 3330934 | Zbl 06387334
Class. Math.: 14P10, 14R15, 32S20, 55N33
Keywords: complex polynomial mappings, singularities at infinity, asymptotical values, intersection homology, Jacobian conjecture.

Résumé - Abstract

We associate to a given polynomial map from $\mathbb{C}^2$ to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.

Bibliography

[1] J. Bochnak, Coste M. & M.-F. Roy, Géométrie algébrique réelle, Springer, 1987  MR 949442 |  Zbl 0633.14016
[2] M. Goresky & R. MacPherson, “Intersection homology theory”, Topology 19 (1980) no. 2, p. 135-162 Article |  MR 572580 |  Zbl 0448.55004
[3] M. Goresky & R. MacPherson, “Intersection homology. II”, Invent. Math. 72 (1983), p. 77-129 Article |  MR 696691 |  Zbl 0529.55007
[4] R. Hardt, “Semi-algebraic local-triviality in semi-algebraic mappings”, Amer. J. Math. 102 (1980) no. 2, p. 291-302 Article |  MR 564475 |  Zbl 0465.14012
[5] Z. Jelonek, “The set of point at which polynomial map is not proper”, Ann. Polon. Math. 58 (1993) no. 3, p. 259-266  MR 1244397 |  Zbl 0806.14009
[6] Z. Jelonek, “Testing sets for properness of polynomial mappings”, Math. Ann. 315 (1999) no. 1, p. 1-35 Article |  MR 1717542 |  Zbl 0946.14039
[7] Z. Jelonek, “Geometry of real polynomial mappings”, Math. Z. 239 (2002) no. 2, p. 321-333 Article |  MR 1888227 |  Zbl 0997.14017
[8] O. H. Keller, “Ganze Cremonatransformationen Monatschr”, Math. Phys. 47 (1939), p. 229-306  Zbl 0021.15303 |  JFM 65.0713.02
[9] F. Kirwan & J. Woolf, An Introduction to Intersection Homology Theory, Chapman & Hall/CRC, 2006  MR 2207421 |  Zbl 1106.55001
[10] T. Mostowski, “Some properties of the ring of Nash functions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976) no. 2, p. 245-266 Numdam |  MR 412180 |  Zbl 0335.14001
[11] G. Valette, “$L^\infty $ homology is an intersection homology”, Adv. in Math. 231 (2012) no. 3-4, p. 1818-1842 Article |  MR 2964625 |  Zbl 1258.14024
top