logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Benjamin Collas; Sylvain Maugeais
Composantes irréductibles de lieux spéciaux d’espaces de modules de courbes, action galoisienne en genre quelconque
(Irreducible components of special loci in moduli spaces of curves, Galois action in general genus)
Annales de l'institut Fourier, 65 no. 1 (2015), p. 245-276, doi: 10.5802/aif.2930
Article PDF | Reviews Zbl 1326.11069
Class. Math.: 11R32, 14H10, 14H30, 14H45
Keywords: algebraic fundamental group, stack inertia, special loci, good groups

Résumé - Abstract

In this paper we characterise the action of the absolute Galois group on the geometric finite cyclic groups without étale factorization of stack inertia of the profinite geometric fundamental group of moduli spaces of marked curves. As a complementary result, we give the same action on prime order profinite elements in genus 2.

Bibliography

[1] J. Bertin & M. Romagny, Champs de Hurwitz, Mémoire de la SMF 125-126, SMF, 2011, arXiv :math/0701680v1  MR 2920693
[2] S. A. Broughton, “The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups”, Topology Appl. 37 (1990) no. 2, p. 101-113 Article |  MR 1080344 |  Zbl 0747.32017
[3] F. Catanese, Irreducibility of the space of cyclic covers of algebraic curves of fixed numerical type and the irreducible components of $Sing(\bar{\mathfrak{M}}_g)$, Advances in geometric analysis, Int. Press, 2012, p. 281–306, arXiv :1011.0316v1  MR 3077261
[4] B. Collas, “Action of a Grothendieck-Teichmüller group on torsion elements of full Teichmüller modular groups of genus one”, International Journal of Number Theory 84 (2012) no. 3, p. 763-787 Article |  MR 2904929 |  Zbl 1288.14015
[5] B. Collas, “Action of the Grothendieck-Teichmüller group on torsion elements of mapping class groups in genus zero”, Journal de Théorie des Nombres de Bordeaux 24 (2012) no. 3, p. 605-622 Article |  MR 3010631 |  Zbl 1278.14040
[6] M. Cornalba, “On the locus of curves with automorphisms”, Ann. Mat. Pura Appl. (4) 149 (1987), p. 135-151 Article |  MR 932781 |  Zbl 0649.14013
[7] M. Cornalba, “Erratum : “On the locus of curves with automorphisms” [Ann. Mat. Pura Appl. (4) 149 (1987), 135–151]”, Ann. Mat. Pura Appl. (4) 187 (2008) no. 1, p. 185-186 Article |  MR 932781 |  Zbl 1150.14003
[8] Y. Cui, “Special loci in moduli of marked curves”, Michigan Math. J. 56 (2008), p. 495-512 Article |  MR 2488722 |  Zbl 1162.14016
[9] P. Deligne & D. Mumford, “The irreducibility of the space of curves of given genus”, Publications Mathématiques de l’IHES 36 (1969) no. 1, p. 75-109 Numdam |  MR 262240 |  Zbl 0181.48803
[10] V. G. Drinfelʼd, “On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${Gal}(\overline{\mathbb{Q}}/{\mathbb{Q}})$”, Algebra i Analiz 2 (1990) no. 4, p. 149-181  MR 1080203 |  Zbl 0718.16034
[11] P. Dèbes & J.-C. Douai, “Algebraic covers : field of moduli versus field of definition”, Annales Sci. E.N.S 30 (1997), p. 303-338 Numdam |  MR 1443489 |  Zbl 0906.12001
[12] T. Ekedahl, Boundary behaviour of Hurwitz schemes, The moduli space of curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser Boston, 1995, p. 173–198  MR 1363057 |  Zbl 0862.14018
[13] P. Frediani & F. Neumann, “Étale Homotopy Types of Moduli Stacks of Algebraic Curves with Symmetries”, K-Theory (2003) no. 30, p. 315-340 Article |  MR 2064243 |  Zbl 1059.14027
[14] M. Fried, “Fields of definition of function fields and Hurwitz families—groups as Galois groups”, Comm. Algebra 5 (1977) no. 1, p. 17-82 Article |  MR 453746 |  Zbl 0478.12006
[15] G. Gonzalez-Diez & W. Harvey, “Fields of definition of function fields and Hurwitz families—groups as Galois groups”, London Math. Soc. Lect. Note Ser. 173 (1992), p. 75-93  Zbl 0763.32014
[16] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math., 1967 Numdam |  Zbl 0135.39701
[17] A. Grothendieck, Esquisse d’un Programme, in P. Lochak, L. Schneps, ed., Geometric Galois Actions I, Cambridge Univ. Press, Cambridge, 1997, p. 5–48  MR 1483107 |  Zbl 0901.14001
[18] A. Grothendieck & J. P. Murre, The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Lecture Notes in Mathematics 208, Springer-Verlag, New York, 1971  MR 316453 |  Zbl 0216.33001
[19] Y. Ihara, On the embedding of $Gal(\overline{\mathbb{Q}}/ \mathbb{Q})$ into $\widehat{GT}$, in L. Schneps, P. Lochak, ed., The Grothendieck Theory of Dessins d’Enfants, Cambridge Univ. Press, Cambridge, 1994, p. 289–321  MR 1305402
[20] S. P. Kerckhoff, “The Nielsen realization problem”, Ann. of Math. (2) 117 (1983) no. 2, p. 235-265 Article |  MR 690845 |  Zbl 0528.57008
[21] F. F. Knudsen, “The projectivity of the moduli space of stable curves. II. The stacks $\textrm{M}_{g,n}$”, Math. Scand. 52 (1983) no. 2, p. 161-199  MR 702953 |  Zbl 0544.14020
[22] P. Lochak, Results and conjectures in profinite Teichmüller theory, Galois-Teichmüller theory and arithmetic geometry, Adv. Stud. Pure Math. 63, Math. Soc. Japan, Tokyo, 2012, p. 263–335  MR 3051247
[23] P. Lochak & L. Schneps, Open problems in Grothendieck-Teichmüller theory, in proc. symp, ed., , Amer. Math. Soc., 2006, p. 165–186  MR 2264540 |  Zbl 1222.14046
[24] S. Maugeais, “Quelques déformations sur les déformations équivariantes des courbes stables”, Manuscripta Math. (2006) no. 120, p. 53-82 Article |  MR 2223481 |  Zbl 1101.14038
[25] D. Mumford, “Abelian quotients of the Teichmüller modular group”, Journal d’Analyse Mathématique 18 (1967) no. 1, p. 227-244 Article |  MR 219543 |  Zbl 0173.22903
[26] H. Nakamura, “Galois rigidity of pure sphere braid groups and profinite calculus”, Journal Mathematical Sciences University Tokyo 1 (1994), p. 71-136  MR 1298541 |  Zbl 0901.14012
[27] H. Nakamura, Galois representations in the profinite Teichmüller modular groups, Geometric Galois actions, 1, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge, 1997, p. 159–174  MR 1483116 |  Zbl 0911.14014
[28] H. Nakamura, “Limits of Galois representations in fundamental groups along maximal degeneration of marked curves. I”, Amer. J. Math. 121 (1999) no. 2, p. 315-358 Article |  MR 1680325 |  Zbl 1006.12001
[29] H. Nakamura & L. Schneps, “On a subgroup of the Grothendieck-Teichmüller group acting on the tower of profinite Teichmüller modular groups”, Inventiones mathematica 141 (2000) no. 1, p. 503-560 Article |  MR 1779619 |  Zbl 1077.14030
[30] B. Noohi, “Fundamental groups of algebraic stacks”, Journal of the Institute of Mathematics of Jussieu 3 (2004) no. 01, p. 69-103 Article |  MR 2036598 |  Zbl 1052.14001
[31] T. Oda, Etale homotopy type of the moduli spaces of algebraic curves, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser. 242, Cambridge Univ. Press, 1997, p. 85–95  MR 1483111 |  Zbl 0902.14019
[32] M. Romagny, “Composantes connexes et irréductibles en familles”, Manuscripta Math. 136 (2011) no. 1-2, p. 1-32 Article |  MR 2820394 |  Zbl 1266.14010
[33] L. Schneps, Special loci in moduli spaces of curves, Galois groups and fundamental groups, Cambridge Univ. Press, 2003  MR 2012218 |  Zbl 1071.14028
[34] J.-P. Serre, Two letters on non-abelian cohomology, Geometric galois actions : around Grothendieck’s esquisse d’un programme, Cambridge Univ. Press, 1997  MR 1483117 |  Zbl 0886.20035
[35] P. Symonds, “On cohomology isomorphisms of groups”, J. Algebra 313 (2007) no. 2, p. 802-810 Article |  MR 2329570 |  Zbl 1131.20038
[36] S. Tufféry, “Déformations de courbes avec action de groupe”, Forum Math. 5 (1993) no. 3, p. 243-259  MR 1216034 |  Zbl 0809.14005
[37] V. Zoonekynd, La tour de Teichmüller-Grothendieck, Ph. D. Thesis, Institut de Mathématiques de Jussieu, 2001
top