logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Yuri Prokhorov
A note on degenerations of del Pezzo surfaces
(Une remarque sur dégénérescences de surfaces de del Pezzo)
Annales de l'institut Fourier, 65 no. 1 (2015), p. 369-388, doi: 10.5802/aif.2934
Article PDF | Reviews Zbl 06496543
Class. Math.: 14J10, 14E30
Keywords: del Pezzo surface, T-singularity, deformation

Résumé - Abstract

We prove that for a Q-Gorenstein degeneration $X$ of del Pezzo surfaces, the number of non-Du Val singularities is at most $\rho (X)+2$. Degenerations with $\rho (X)+2$ and $\rho (X)+1$ non-Du Val points are investigated

Bibliography

[1] Egbert Brieskorn, “Rationale Singularitäten komplexer Flächen”, Invent. Math. 4 (1967/1968), p. 336-358 Article |  MR 222084 |  Zbl 0219.14003
[2] Alan H. Durfee, “Fifteen characterizations of rational double points and simple critical points”, Enseign. Math. (2) 25 (1979) no. 1-2, p. 131-163  MR 543555 |  Zbl 0418.14020
[3] Paul Hacking, “Compact moduli of plane curves”, Duke Math. J. 124 (2004) no. 2, p. 213-257 Article |  MR 2078368 |  Zbl 1060.14034
[4] Paul Hacking, Compact moduli spaces of surfaces of general type, Compact moduli spaces and vector bundles, Contemp. Math. 564, Amer. Math. Soc., Providence, RI, 2012, p. 1–18 Article |  MR 2895182 |  Zbl 1254.14043
[5] Paul Hacking, “Exceptional bundles associated to degenerations of surfaces”, Duke Math. J. 162 (2013) no. 6, p. 1171-1202 Article |  MR 3053568 |  Zbl 1282.14074
[6] Paul Hacking & Yuri Prokhorov, “Smoothable del Pezzo surfaces with quotient singularities”, Compos. Math. 146 (2010) no. 1, p. 169-192 Article |  MR 2581246 |  Zbl 1194.14054
[7] B. V. Karpov & D. Yu. Nogin, “Three-block exceptional sets on del Pezzo surfaces”, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998) no. 3, p. 3-38 Article |  MR 1642152 |  Zbl 0949.14026
[8] J. Kollár & N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math. 91 (1988) no. 2, p. 299-338 Article |  MR 922803 |  Zbl 0642.14008
[9] János Kollár (ed.), Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992)  MR 1225842
[10] János Kollár & Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original Article |  MR 1658959 |  Zbl 0926.14003
[11] Marco Manetti, “Normal degenerations of the complex projective plane”, J. Reine Angew. Math. 419 (1991), p. 89-118 Article |  MR 1116920 |  Zbl 0719.14023
[12] M. Miyanishi & D.-Q. Zhang, “Gorenstein log del Pezzo surfaces of rank one”, J. Algebra 118 (1988) no. 1, p. 63-84 Article |  MR 961326 |  Zbl 0664.14019
[13] David R. Morrison, “The birational geometry of surfaces with rational double points”, Math. Ann. 271 (1985) no. 3, p. 415-438 Article |  MR 787190 |  Zbl 0539.14008
[14] Yu. G. Prokhorov, “On semistable Mori contractions”, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004) no. 2, p. 147-158 Article |  MR 2058003 |  Zbl 1075.14014
[15] Yu. G. Prokhorov & V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom. 18 (2009) no. 1, p. 151-199 Article |  MR 2448282 |  Zbl 1159.14020
[16] Yuri G. Prokhorov, Lectures on complements on log surfaces, MSJ Memoirs 10, Mathematical Society of Japan, Tokyo, 2001  MR 1830440 |  Zbl 1037.14003
[17] Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., Providence, RI, 1987, p. 345–414  MR 927963 |  Zbl 0634.14003
[18] V. V. Shokurov, “Complements on surfaces”, J. Math. Sci. (New York) 102 (2000) no. 2, p. 3876-3932, Algebraic geometry, 10 Article |  MR 1794169 |  Zbl 1177.14078
[19] Jonathan Wahl, “Smoothings of normal surface singularities”, Topology 20 (1981) no. 3, p. 219-246 Article |  MR 608599 |  Zbl 0484.14012
top