logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
James Parkinson; Wolfgang Woess
Regular sequences and random walks in affine buildings
(Suites régulières et marches aléatoires dans les immeubles affines)
Annales de l'institut Fourier, 65 no. 2 (2015), p. 675-707, doi: 10.5802/aif.2941
Article PDF
Class. Math.: 20E42, 51E24, 05C81, 60J10
Keywords: Affine building, CAT(0), multiplicative ergodic theorem, random walks, regular sequences

Résumé - Abstract

We define and characterise regular sequences in affine buildings, thereby giving the $p$-adic analogue of the fundamental work of Kaimanovich on regular sequences in symmetric spaces. As applications we prove limit theorems for random walks on affine buildings and their automorphism groups.

Bibliography

[1] Peter Abramenko & Kenneth S. Brown, Buildings, Graduate Texts in Mathematics 248, Springer, New York, 2008, Theory and applications Article |  MR 2439729 |  Zbl 1214.20033
[2] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley Article |  MR 1890629 |  Zbl 0672.22001
[3] Martin R. Bridson & André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319, Springer-Verlag, Berlin, 1999 Article |  MR 1744486 |  Zbl 0988.53001
[4] S. Brofferio, “Renewal theory on the affine group of an oriented tree”, J. Theoret. Probab. 17 (2004) no. 4, p. 819-859 Article |  MR 2105737 |  Zbl 1065.60123
[5] F. Bruhat & J. Tits, “Groupes réductifs sur un corps local”, Inst. Hautes Études Sci. Publ. Math. (1972) no. 41, p. 5-251 Numdam |  MR 327923 |  Zbl 0254.14017
[6] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972, Pure and Applied Mathematics, Vol. 28  MR 407163 |  Zbl 0723.20006
[7] D. I. Cartwright, V. A. Kaĭmanovich & W. Woess, “Random walks on the affine group of local fields and of homogeneous trees”, Ann. Inst. Fourier (Grenoble) 44 (1994) no. 4, p. 1243-1288 Cedram |  MR 1306556 |  Zbl 0809.60010
[8] Donald I. Cartwright & Wolfgang Woess, “Isotropic random walks in a building of type $Ã_d$”, Math. Z. 247 (2004) no. 1, p. 101-135 Article |  MR 2054522 |  Zbl 1060.60070
[9] Lizhen Ji, “Buildings and their applications in geometry and topology”, Asian J. Math. 10 (2006) no. 1, p. 11-80 Article |  MR 2213684 |  Zbl 1163.22010
[10] V. A. Kaĭmanovich, “Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 164 (1987) no. Differentsialnaya Geom. Gruppy Li i Mekh. IX, p. 29-46, 196–197 Article |  MR 947327 |  Zbl 0696.22012
[11] Anders Karlsson & François Ledrappier, “On laws of large numbers for random walks”, Ann. Probab. 34 (2006) no. 5, p. 1693-1706 Article |  MR 2271477 |  Zbl 1111.60005
[12] Anders Karlsson & Gregory A. Margulis, “A multiplicative ergodic theorem and nonpositively curved spaces”, Comm. Math. Phys. 208 (1999) no. 1, p. 107-123 Article |  MR 1729880 |  Zbl 0979.37006
[13] Marc Lindlbauer & Michael Voit, “Limit theorems for isotropic random walks on triangle buildings”, J. Aust. Math. Soc. 73 (2002) no. 3, p. 301-333 Article |  MR 1936256 |  Zbl 1028.60005
[14] I. G. Macdonald, Spherical functions on a group of $p$-adic type, Ramanujan Institute, Centre for Advanced Study in Mathematics,University of Madras, Madras, 1971, Publications of the Ramanujan Institute, No. 2  MR 435301 |  Zbl 0302.43018
[15] V. I. Oseledec, “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems”, Trudy Moskov. Mat. Obšč. 19 (1968), p. 179-210  MR 240280 |  Zbl 0236.93034
[16] James Parkinson, “Buildings and Hecke algebras”, J. Algebra 297 (2006) no. 1, p. 1-49 Article |  MR 2206366 |  Zbl 1095.20003
[17] James Parkinson, “Spherical harmonic analysis on affine buildings”, Math. Z. 253 (2006) no. 3, p. 571-606 Article |  MR 2221087 |  Zbl 1171.43009
[18] James Parkinson, “Isotropic random walks on affine buildings”, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 2, p. 379-419 Cedram |  MR 2310945 |  Zbl 1177.60046
[19] James Parkinson & Bruno Schapira, A local limit theorem for random walks on the chambers of $Ã_2$ buildings, Random walks, boundaries and spectra, Progr. Probab. 64, Birkhäuser/Springer Basel AG, Basel, 2011, p. 15–53 Article |  MR 3051691 |  Zbl 1245.60031
[20] M. A. Ronan, A construction of buildings with no rank $3$ residues of spherical type, Buildings and the geometry of diagrams (Como, 1984), Lecture Notes in Math. 1181, Springer, Berlin, 1986, p. 242–248 Article |  MR 843395 |  Zbl 0588.51015
[21] Mark Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL, 2009, Updated and revised  MR 2560094 |  Zbl 1190.51008
[22] Stanley Sawyer, “Isotropic random walks in a tree”, Z. Wahrsch. Verw. Gebiete 42 (1978) no. 4, p. 279-292 Article |  MR 491493 |  Zbl 0362.60075
[23] Bruno Schapira, “Random walk on a building of type $Ã_r$ and Brownian motion of the Weyl chamber”, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) no. 2, p. 289-301 Numdam |  MR 2521404 |  Zbl 1218.60003
[24] Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968, Notes prepared by John Faulkner and Robert Wilson  MR 466335 |  Zbl 1196.22001
[25] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974  MR 470099 |  Zbl 0295.20047
[26] Jacques Tits, Immeubles de type affine, Buildings and the geometry of diagrams (Como, 1984), Lecture Notes in Math. 1181, Springer, Berlin, 1986, p. 159–190 Article |  MR 843391 |  Zbl 0611.20026
[27] Filippo Tolli, “A local limit theorem on certain $p$-adic groups and buildings”, Monatsh. Math. 133 (2001) no. 2, p. 163-173 Article |  MR 1860298 |  Zbl 1005.60018
[28] Richard M. Weiss, The structure of affine buildings, Annals of Mathematics Studies 168, Princeton University Press, Princeton, NJ, 2009  MR 2468338 |  Zbl 1166.51001
top