logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Thomas Reichelt
A comparison theorem between Radon and Fourier-Laplace transforms for D-modules
(Un théorème de comparaison entre la transformation de Radon et Fourier-Laplace pour les D-modules)
Annales de l'institut Fourier, 65 no. 4 (2015), p. 1577-1616, doi: 10.5802/aif.2968
Article PDF
Class. Math.: 32C38
Keywords: $\mathcal{D}$-modules, Radon transform, Fourier-Laplace transform

Résumé - Abstract

We prove a comparison theorem between the $d$-plane Radon transform and the Fourier-Laplace transform for $D$-modules. This generalizes results of Brylinski and d’Agnolo-Eastwood.

Bibliography

[1] Jean-Luc Brylinski, “Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques”, Astérisque (1986) no. 140-141, p. 3-134, 251, Géométrie et analyse microlocales  MR 864073 |  Zbl 0624.32009
[2] Andrea D’Agnolo, Sheaves and $\mathcal{D}$-modules in integral geometry, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), Contemp. Math. 251, Amer. Math. Soc., 2000, p. 141–161  MR 1771265 |  Zbl 0965.53050
[3] Andrea D’Agnolo & Michael Eastwood, “Radon and Fourier transforms for $\mathcal{D}$-modules”, Adv. Math. 180 (2003) no. 2, p. 452-485 Article |  MR 2020549 |  Zbl 1051.32008
[4] Andrea D’Agnolo & Pierre Schapira, “Leray’s quantization of projective duality”, Duke Math. J. 84 (1996) no. 2, p. 453-496 Article |  MR 1404336 |  Zbl 0879.32011
[5] Andrea D’Agnolo & Pierre Schapira, “Radon-Penrose transform for $\mathcal{D}$-modules”, J. Funct. Anal. 139 (1996) no. 2, p. 349-382 Article |  MR 1402769 |  Zbl 0879.32012
[6] Michael G. Eastwood, Roger Penrose & R. O. Wells, “Cohomology and massless fields”, Comm. Math. Phys. 78 (1980/81) no. 3, p. 305-351 Article |  MR 603497 |  Zbl 0465.58031
[7] Sigurður Helgason, A duality in integral geometry on symmetric spaces, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, p. 37–56  MR 229191 |  Zbl 0141.39105
[8] Ryoshi Hotta, Kiyoshi Takeuchi & Toshiyuki Tanisaki, $\mathcal{D}$-modules, perverse sheaves, and representation theory, Progress in Mathematics 236, Birkhäuser Boston Inc., Boston, MA, 2008, Translated from the 1995 Japanese edition by Takeuchi Article |  MR 2357361 |  Zbl 1136.14009
[9] Nicholas M. Katz & Gérard Laumon, “Transformation de Fourier et majoration de sommes exponentielles”, Inst. Hautes Études Sci. Publ. Math. (1985) no. 62, p. 361-418 Numdam |  MR 823177 |  Zbl 0603.14015
[10] Bernard Malgrange, “Transformation de Fourier géometrique”, Astérisque (1988) no. 161-162, p. Exp. No. 692, 4, 133-150 (1989), Séminaire Bourbaki, Vol. 1987/88 Numdam |  MR 992206 |  Zbl 0687.35003
[11] Johann Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.- Nat. Kl. 69 (1917), p. 262-277  MR 692055 |  JFM 46.0436.02
[12] Thomas Reichelt, “Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules”, Compos. Math. 150 (2014) no. 6, p. 911-941 Article |  MR 3223877
top