logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Rémi B. Coulon
Partial periodic quotients of groups acting on a hyperbolic space
(Quotient partiellement périodique de groupes agissant sur une espace hyperbolique)
Annales de l'institut Fourier, 66 no. 5 (2016), p. 1773-1857, doi: 10.5802/aif.3050
Article PDF
Class. Math.: 10X99, 14A12, 11L05
Keywords: Small cancellation theory, mapping class groups, hyperbolic spaces, periodic quotients

Résumé - Abstract

In this article, we construct partial periodic quotients of groups which have a non-elementary acylindrical action on a hyperbolic space. In particular, we provide infinite quotients of mapping class groups where a fixed power of every homeomorphism is identified with a periodic or reducible element.

Bibliography

[1] Mladen Bestvina & Mark Feighn, “A hyperbolic ${\rm Out}(F_n)$-complex”, Groups Geom. Dyn. 4 (2010) no. 1, p. 31-58 Article |  Zbl 1190.20017
[2] Mladen Bestvina & Koji Fujiwara, “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol. 6 (2002), p. 69-89 (electronic) Article |  Zbl 1021.57001
[3] Brian H. Bowditch, “Tight geodesics in the curve complex”, Invent. Math. 171 (2008) no. 2, p. 281-300 Article |  Zbl 1185.57011
[4] Brian H. Bowditch, “Relatively hyperbolic groups”, Internat. J. Algebra Comput. 22 (2012) no. 3 Article |  Zbl 1259.20052
[5] Martin R. Bridson & André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319, Springer-Verlag, Berlin, 1999 Article |  Zbl 0988.53001
[6] Serge Cantat & Stéphane Lamy, “Normal subgroups in the Cremona group”, Acta Math. 210 (2013) no. 1, p. 31-94, With an appendix by Yves de Cornulier Article |  Zbl 1278.14017
[7] M. Coornaert, T. Delzant & A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer-Verlag, Berlin, 1990, Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary  Zbl 0727.20018
[8] Rémi Coulon, “Asphericity and small cancellation theory for rotation families of groups”, Groups Geom. Dyn. 5 (2011) no. 4, p. 729-765 Article |  Zbl 1277.20043
[9] Rémi Coulon, “Outer automorphisms of free Burnside groups”, Comment. Math. Helv. 88 (2013) no. 4, p. 789-811 Article |  Zbl 1291.20035
[10] Rémi Coulon, “On the geometry of Burnside quotients of torsion free hyperbolic groups”, Internat. J. Algebra Comput. 24 (2014) no. 3, p. 251-345 Article
[11] F Dahmani, V Guirardel & Denis Osin, “Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces”, http://arxiv.org/abs/1111.7048
[12] Thomas Delzant, Sous-groupes à deux générateurs des groupes hyperboliques, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, p. 177–189  Zbl 0845.20027
[13] Thomas Delzant & Misha Gromov, “Courbure mésoscopique et théorie de la toute petite simplification”, J. Topol. 1 (2008) no. 4, p. 804-836 Article |  Zbl 1197.20035
[14] Cornelia Druţu & Mark Sapir, “Tree-graded spaces and asymptotic cones of groups”, Topology 44 (2005) no. 5, p. 959-1058, With an appendix by Denis Osin and Sapir Article |  Zbl 1101.20025
[15] Benson Farb, “Relatively hyperbolic groups”, Geom. Funct. Anal. 8 (1998) no. 5, p. 810-840 Article |  Zbl 0985.20027
[16] Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI, 2006, p. 11–55 Article |  Zbl 1191.57015
[17] Benson Farb & Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton University Press, Princeton, NJ, 2012  Zbl 1245.57002
[18] Louis Funar, “On the TQFT representations of the mapping class groups”, Pacific J. Math. 188 (1999) no. 2, p. 251-274 Article |  Zbl 0948.57024
[19] Louis Funar, “On power subgroups of mapping class groups”, http://arxiv.org/abs/0910.1493, 2009
[20] Louis Funar & Toshitake Kohno, “Free subgroups within the images of quantum representations”, Forum Math. 26 (2014) no. 2, p. 337-355 Article |  Zbl 1303.57002
[21] Louis Funar & Toshitake Kohno, “On Burau’s representations at roots of unity”, Geom. Dedicata 169 (2014), p. 145-163 Article |  Zbl 1298.57002
[22] É. Ghys & P. de la Harpe (ed.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser Boston, Inc., Boston, MA, 1990, Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988 Article
[23] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987, p. 75–263 Article |  Zbl 0634.20015
[24] W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, N.J., 1981, p. 245–251  Zbl 0461.30036
[25] G. Christopher Hruska, “Relative hyperbolicity and relative quasiconvexity for countable groups”, Algebr. Geom. Topol. 10 (2010) no. 3, p. 1807-1856 Article |  Zbl 1202.20046
[26] Nikolai V. Ivanov, Fifteen problems about the mapping class groups, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI, 2006, p. 71–80 Article |  Zbl 1281.57011
[27] S. V. Ivanov & A. Yu. Olʼshanskiĭ, “Hyperbolic groups and their quotients of bounded exponents”, Trans. Amer. Math. Soc. 348 (1996) no. 6, p. 2091-2138 Article |  Zbl 0876.20023
[28] Rob Kirby, Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI, 1997, p. 35–473
[29] Howard A. Masur & Yair N. Minsky, “Geometry of the complex of curves. I. Hyperbolicity”, Invent. Math. 138 (1999) no. 1, p. 103-149 Article |  Zbl 0941.32012
[30] Ashot Minasyan & Denis Osin, “Acylindrical hyperbolicity of groups acting on trees”, http://arxiv.org/abs/1310.6289, 2013
[31] P. S. Novikov & S. I. Adjan, “Infinite periodic groups”, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), p. 212-244, 251–524, 709–731  Zbl 0194.03301
[32] A. Yu. Olʼshanskiĭ, “The Novikov-Adyan theorem”, Mat. Sb. (N.S.) 118(160) (1982) no. 2, p. 203-235, 287  Zbl 0539.20020
[33] A. Yu. Olʼshanskiĭ, “Periodic quotient groups of hyperbolic groups”, Mat. Sb. 182 (1991) no. 4, p. 543-567  Zbl 0820.20044
[34] Denis Osin, “Acylindrically hyperbolic groups”, http://arxiv.org/abs/1304.1246, 2013
[35] Joseph J. Rotman, An introduction to the theory of groups, Graduate Texts in Mathematics 148, Springer-Verlag, New York, 1995 Article |  Zbl 0810.20001
[36] I Schur, “Über Gruppen periodischer linearer Substitutionen.”, Berl. Ber. 1911 (1911), p. 619-627  JFM 42.0155.01
[37] Z. Sela, “Acylindrical accessibility for groups”, Invent. Math. 129 (1997) no. 3, p. 527-565 Article |  Zbl 0887.20017
[38] Jean-Pierre Serre, Rigidité du foncteur de Jacobi d’échelon $n \ge 3$, in Séminaire Henri Cartan, 1961, p. 18-20
[39] Jean-Pierre Serre, Arbres, amalgames, ${\rm SL}_{2}$, Société Mathématique de France, Paris, 1977, Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46  Zbl 0369.20013
[40] Alessandro Sisto, “Contracting elements and random walks”, http://arxiv.org/abs/1112.2666, 2011
[41] Andrzej Szczepański, “Relatively hyperbolic groups”, Michigan Math. J. 45 (1998) no. 3, p. 611-618 Article |  Zbl 0962.20031
[42] William P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.) 19 (1988) no. 2, p. 417-431 Article |  Zbl 0674.57008
top