With cedram.org
Table of contents for this issue | Previous article | Next article
Antoine Julien
Complexity as a homeomorphism invariant for tiling spaces
(La fonction de complexité comme invariant topologique des espaces de pavages)
Annales de l'institut Fourier, 67 no. 2 (2017), p. 539-577, doi: 10.5802/aif.3091
Article PDF
Class. Math.: 37B50, 37B10
Keywords: aperiodic tilings, complexity, repetitivity, flow-equivalence, orbit-equivalence

Résumé - Abstract

It is proved that whenever two aperiodic repetitive tilings with finite local complexity have homeomorphic tiling spaces, their associated complexity functions are asymptotically equivalent in a certain sense (which implies, if the complexity is polynomial, that the exponent of the leading term is preserved by homeomorphism). This theorem can be reworded in terms of $d$-dimensional infinite words: if two $\mathbb{Z}^d$-subshifts (with the same conditions as above) are flow equivalent, their complexity functions are equivalent up to rescaling. An analogous theorem is stated for the repetitivity function, which is a quantitative measure of the recurrence of orbits in the tiling space. Behind this result is the fact that any homeomorphism between tiling spaces is described by a so-called “shape deformation”. In the last section, we use this observation to show that a certain cohomology group is an invariant of homeomorphisms between tiling spaces up to topological conjugacy.


[1] Michael Baake, Daniel Lenz & Christoph Richard, “Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies”, Lett. Math. Phys. 82 (2007) no. 1, p. 61-77 Article
[2] Michael Baake, Martin Schlottmann & Peter D. Jarvis, “Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability”, J. Phys. A 24 (1991) no. 19, p. 4637-4654 Article
[3] Jean Bellissard, Riccardo Benedetti & Jean-Marc Gambaudo, “Spaces of tilings, finite telescopic approximations and gap-labeling”, Comm. Math. Phys. 261 (2006) no. 1, p. 1-41 Article
[4] Jean Bellissard, D. J. L. Herrmann & M. Zarrouati, Hulls of aperiodic solids and gap labeling theorems, Directions in mathematical quasicrystals, CRM Monogr. Ser. 13, Amer. Math. Soc., 2000, p. 207–258
[5] Riccardo Benedetti & Jean-Marc Gambaudo, “On the dynamics of $\mathbb{G}$-solenoids. Applications to Delone sets”, Ergodic Theory Dynam. Systems 23 (2003) no. 3, p. 673-691 Article
[6] Housem Boulmezaoud & Johannes Kellendonk, “Comparing different versions of tiling cohomology”, Topology Appl. 157 (2010) no. 14, p. 2225-2239 Article
[7] Alex Clark & Lorenzo Sadun, “When shape matters: deformations of tiling spaces”, Ergodic Theory Dynam. Systems 26 (2006) no. 1, p. 69-86 Article
[8] Natalie Frank & Lorenzo Sadun, “Fusion tilings with infinite local complexity”, Topology Proc. 43 (2014), p. 235-276
[9] Antoine Julien, Complexité des pavages apériodiques : calculs et interprétations, Ph. D. Thesis, Université Lyon 1, https://tel.archives-ouvertes.fr/tel-00466323v1, 2009
[10] Antoine Julien, “Complexity and cohomology for cut-and-projection tilings”, Ergodic Theory Dynam. Systems 30 (2010) no. 2, p. 489-523 Article
[11] Antoine Julien & Lorenzo Sadun, “Tiling deformations, cohomology, and orbit equivalence of tiling spaces”, http://arxiv.org/abs/1506.02694, 2015
[12] Antoine Julien & Jean Savinien, “Transverse Laplacians for substitution tilings”, Comm. Math. Phys. 301 (2011) no. 2, p. 285-318 Article
[13] Johannes Kellendonk, “Noncommutative geometry of tilings and gap labelling”, Rev. Math. Phys. 7 (1995) no. 7, p. 1133-1180 Article
[14] Johannes Kellendonk, “Pattern-equivariant functions and cohomology”, J. Phys. A 36 (2003) no. 21, p. 5765-5772 Article
[15] Johannes Kellendonk, “Pattern equivariant functions, deformations and equivalence of tiling spaces”, Ergodic Theory Dynam. Systems 28 (2008) no. 4, p. 1153-1176 Article
[16] Johannes Kellendonk & Ian F. Putnam, “The Ruelle-Sullivan map for actions of $\mathbb{R}^n$”, Math. Ann. 334 (2006) no. 3, p. 693-711 Article
[17] Johannes Kellendonk & Lorenzo Sadun, “Meyer sets, topological eigenvalues, and Cantor fiber bundles”, J. Lond. Math. Soc. 89 (2014) no. 1, p. 114-130 Article
[18] Jeffrey C. Lagarias & Peter A. B. Pleasants, “Repetitive Delone sets and quasicrystals”, Ergodic Theory Dynam. Systems 23 (2003) no. 3, p. 831-867 Article
[19] Daniel Lenz, “Aperiodic Linearly Repetitive Delone Sets Are Densely Repetitive”, Discrete Comput Geom 31 (2004) no. 2, p. 323-326 Article
[20] Marston Morse & Gustav A. Hedlund, “Symbolic Dynamics”, Amer. J. Math. 60 (1938) no. 4, p. 815-866 Article
[21] Paul S. Muhly, Jean N. Renault & Dana P. Williams, “Equivalence and isomorphism for groupoid $C^\ast $-algebras”, J. Operator Theory 17 (1987) no. 1, p. 3-22
[22] Betseygail Rand & Lorenzo Sadun, “An approximation theorem for maps between tiling spaces”, Discrete Contin. Dyn. Syst. 29 (2011) no. 1, p. 323-326 Article
[23] Jean Renault, A groupoid approach to $C^{\ast } $-algebras, Lecture Notes in Mathematics 793, Springer, Berlin, 1980
[24] Lorenzo Sadun & R. F. Williams, “Tiling spaces are Cantor set fiber bundles”, Ergodic Theory Dynam. Systems 23 (2003) no. 1, p. 307-316 Article
[25] Martin Schlottmann, “Periodic and quasi-periodic Laguerre tilings”, Internat. J. Modern Phys. B 7 (1993) no. 6-7, p. 1351-1363 Article