logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Henning Krause
Highest weight categories and recollements
(Catégories de plus haut poids et recollements)
Annales de l'institut Fourier, 67 no. 6 (2017), p. 2679-2701, doi: 10.5802/aif.3147
Article PDF
Class. Math.: 16G10, 16D90, 16E65, 18E30
Keywords: Highest weight category, quasi-hereditary algebra, recollement, exceptional sequence, derived category

Résumé - Abstract

We provide several equivalent descriptions of a highest weight category using recollements of abelian categories. Also, we explain the connection between sequences of standard and exceptional objects.

Bibliography

[1] Maurice Auslander, “Representation theory of Artin algebras. I”, Commun. Algebra 1 (1974), p. 177-268 Article
[2] Alexander A. Beĭlinson, Joseph N. Bernstein & Pierre René Deligne, Faisceaux pervers, Analysis and topology on singular spaces, Astérisque 100, Société Mathématique de France, 1982, p. 5-171
[3] Alexey I. Bondal, “Representation of associative algebras and coherent sheaves”, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) no. 1, p. 25-44, translation in Math. USSR-Izv. 34 (1990), no. 1, 23–42
[4] Ragnar-Olaf Buchweitz, Graham J. Leuschke & Michel Van den Bergh, “On the derived category of Grassmannians in arbitrary characteristic”, Compos. Math. 151 (2015) no. 7, p. 1242-1264 Article
[5] Edward T. Cline, Brian J. Parshall & Leonard L. Scott, “Finite-dimensional algebras and highest weight categories”, J. Reine Angew. Math. 391 (1988), p. 85-99
[6] Vlastimil Dlab & Claus Michael Ringel, “Quasi-hereditary algebras”, Ill. J. Math. 33 (1989) no. 2, p. 280-291
[7] Vlastimil Dlab & Claus Michael Ringel, The module theoretical approach to quasi-hereditary algebras, Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society Lecture Note Series 168, Cambridge University Press, 1992, p. 200–224
[8] Alexander I. Efimov, “Derived categories of Grassmannians over integers and modular representation theory”, Adv. Math. 304 (2017), p. 179-226 Article
[9] Pierre Gabriel, “Des catégories abéliennes”, Bull. Soc. Math. Fr. 90 (1962), p. 323-448 Article
[10] Pierre Gabriel, Indecomposable representations. II, Algebra commut., Geometria (Convegni 1971/1972), Symposia Mathematica 11, Academic Press, 1973, p. 81–104
[11] Pierre Gabriel & Michel Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 85, Springer, 1967
[12] Werner Geigle & Helmut Lenzing, “Perpendicular categories with applications to representations and sheaves”, J. Algebra 144 (1991) no. 2, p. 273-343 Article
[13] Alexey L. Gorodentsev, “Exceptional bundles on surfaces with a moving anticanonical class”, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988) no. 4, p. 740-757, translation in Math. USSR-Izv. 33 (1989), no. 1, 67–83
[14] Alexey L. Gorodentsev & Alexei Nikolaevich Rudakov, “Exceptional vector bundles on projective spaces”, Duke Math. J. 54 (1987) no. 1, p. 115-130 Article
[15] Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics 20, Springer, 1966
[16] Lutz Hille & Markus Perling, “Tilting bundles on rational surfaces and quasi-hereditary algebras”, Ann. Inst. Fourier 64 (2014) no. 2, p. 625-644 Article
[17] Luc Illusie, Existence de résolutions globales, Théorie des Intersections et théorème de Riemann-Roch (SGA 6, 1966/67), Lecture Notes in Mathematics 225, Springer, 1971, p. 160–221
[18] Osamu Iyama, “Finiteness of representation dimension”, Proc. Am. Math. Soc. 131 (2003) no. 4, p. 1011-1014 Article
[19] Bernhard Keller, Derived categories and their use, Handbook of algebra. Volume 1, North-Holland, 1996, p. 671–701
[20] Henning Krause, Highest weight categories and strict polynomial functors, Representation theory - Current trends and perspectives, European Mathematical Society, 2017, p. 331–373
[21] Brian J. Parshall & Leonard L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, Proceedings of the Ottawa-Moosonee Workshop in Algebra, Carleton University Notes 3, Carleton University, 988, p. 1–105
[22] Chrysostomos Psaroudakis, “Homological theory of recollements of abelian categories”, J. Algebra 398 (2014), p. 63-110 Article
[23] Raphaël Rouquier, “$q$-Schur algebras and complex reflection groups”, Mosc. Math. J. 8 (2008) no. 1, p. 119-158
[24] Alexei Nikolaevich Rudakov (ed.), Helices and vector bundles: Seminaire Rudakov, London Mathematical Society Lecture Note Series 148, Cambridge University Press, 1990
[25] Leonard L. Scott, Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proceedings of Symposia in Pure Mathematics 47, American Mathematical Society, 1987, p. 271–281
[26] Jean-Pierre Serre, “Groupes proalgébriques”, Publ. Math., Inst. Hautes Étud. Sci. 7 (1961), p. 341-403
[27] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239, Société Mathématique de France, 1996
top