logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Velimir Jurdjevic; Ivan Kupka
Control systems on semi-simple Lie groups and their homogeneous spaces
Annales de l'institut Fourier, 31 no. 4 (1981), p. 151-179, doi: 10.5802/aif.853
Article PDF | Reviews MR 84a:93014 | Zbl 0453.93011

Résumé - Abstract

In the present paper, we consider the class of control systems which are induced by the action of a semi-simple Lie group on a manifold, and we give a sufficient condition which insures that such a system can be steered from any initial state to any final state by an admissible control. The class of systems considered contains, in particular, essentially all the bilinear systems. Our condition is semi-algebraic but unlike the celebrated Kalman criterion for linear systems, it is not necessary. In fact, it appears that there is no semi-algebraic necessary and sufficient condition in the bilinear case and that our criterion is in some sense optimal. This will be discussed in a future paper.

Bibliography

[1] N. BOURBAKI, Algèbre de Lie, Chap. VII-VIII, Hermann.
[2] A. BOREL-G. MOSTOW, On semi-simple automorphisms of Lie algebras, Ann. of Math., vol. 61 (1955), 389-405.  MR 16,897d |  Zbl 0066.02401
[3] J. DIXMIER, Enveloping algebras, North-Holland.  Zbl 0867.17001
[4] H. FREUDENTHAL, Linear Lie groups, Academic Press.  Zbl 0377.22001
[5] V. JURDJEVIC and I. KUPKA, Control systems subordinated to a group action : Accessibility, Journal of Diff. Equations, 39, 2 (1981), 186-211.  MR 82f:93009 |  Zbl 0531.93008
[6] V. JURDJEVIC and H. SUSSMANN, Control systems on Lie groups, Journal of Diff. Equations, (12) (1972), 313-329.  MR 48 #9519 |  Zbl 0237.93027
[7] A. KRENER, A generalization of Chow's theorem and the bang-bang theorem to non-linear control systems, SIAM J. Control, 11 (1973), 670-676.  Zbl 0243.93009
[8] C. LOBRY, Contrôlabilité des systèmes non-linéaires, SIAM Journal on Control, 8 (1970), 573-605.  MR 42 #6860 |  Zbl 0207.15201
[9] C. LOBRY, Contrôlabilité des systèmes non-linéaires, Proceedings of űOutils et modèles mathématiques pour l'automatique et l'analyse de systèmesƇ, C.N.R.S., Mai 1980, Centre Paul Langevin (CAES-CNRS), Aussois, France.
[10] B. LEVITT and H. SUSSMANN, On controllability by means of two vector fields, SIAM Journal on Control, 13 (1975), 1271-1281.  MR 53 #6626 |  Zbl 0313.93006
[11] G. MOSTOW, Lie algebras and Lie groups, Mem. Amer. Math. Soc., n° 14.
[12] H. SUSSMANN and V. JURDJEVIC, Controllability of non-linear systems, Journal of Diff. Equations, 12 (1972), 95-116.  MR 49 #3646 |  Zbl 0242.49040
top