logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Jean-Philippe Monnier
Clifford’s Theorem for real algebraic curves
(Théorème de Clifford pour les courbes algébriques réelles)
Annales de l'institut Fourier, 60 no. 1 (2010), p. 31-50, doi: 10.5802/aif.2516
Article PDF | Reviews MR 2664309 | Zbl 1206.14020
Class. Math.: 14C20, 14H51, 14P25, 14P99
Keywords: Real algebraic curves, special divisors

Résumé - Abstract

We establish, for smooth projective real curves, an analogue of the classical Clifford inequality known for complex curves. We also study the cases when equality holds.

Bibliography

[1] R. D. M. Accola, “On Castelnuovo’s inequality for algebraic curves 1”, Trans. Amer. Math. Soc. 251 (1979), p. 357-373  MR 531984 |  Zbl 0417.14021
[2] Robert D. M. Accola, Plane models for Riemann surfaces admitting certain half-canonical linear series. I, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Princeton Univ. Press, 1981, p. 7–20  MR 624801 |  Zbl 0491.30038
[3] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris, Geometry of Algebraic Curves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 267, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1985  MR 770932 |  Zbl 0559.14017
[4] J. Bochnak, M. Coste & M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 12, Springer-Verlag, Berlin, 1987  MR 949442 |  Zbl 0633.14016
[5] M. Coppens, C. Keem & G. Martens, “Primitive linear series on curves”, Manuscripta Mathematica 77 (1992), p. 237-264 Article |  MR 1188583 |  Zbl 0786.14016
[6] M. Coppens & G. Martens, “Secant space and Clifford’s theorem”, Compositio Mathematica 78 (1991), p. 193-212 Numdam |  MR 1104787 |  Zbl 0741.14035
[7] D. Eisenbud, H. Lange, G. Martens & F.-O. Schreyer, “The Clifford dimension of a projective curve”, Compositio Mathematica 72 (1989), p. 173-204 Numdam |  MR 1030141 |  Zbl 0703.14020
[8] B. H. Gross & J. Harris, “Real algebraic curves”, Ann. Sci. École Norm. Sup. (4) 14 (1981), p. 157-182 Numdam |  MR 631748 |  Zbl 0533.14011
[9] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52  MR 463157 |  Zbl 0367.14001
[10] J. Huisman, “Clifford’s inequality for real algebraic curves”, Indag. Math. 14 (2003) no. 2, p. 197-205 Article |  MR 2026814 |  Zbl 1063.14074
[11] J.-Ph. Monnier, “Divisors on real curves”, Adv. Geom. 3 (2003), p. 339-360 Article |  MR 1997411 |  Zbl 1079.14013
top